Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Anim Cogn ; 27(1): 21, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441671

RESUMO

Several studies have investigated habituation in a defensive context, but few have addressed responses to dangerous stimuli. In such cases, animals should not habituate since this could cost their lives. Here we have stimulated individuals of the harvester Mischonyx squalidus with a predatory stimulus (squeezing with tweezers) in repeated trials within and between days, and measured the occurrence and magnitude of nipping, a defensive behavior. Contrary to our expectations, they did habituate to this stimulus. The probability and magnitude of response declined over trials during each of three days of testing in a typical habituation pattern. During the trials we also observed other defensive behaviors. We discuss our results mainly considering alternative defensive responses. Our data show that we lack information on (1) the role played by the ambiguity of stimuli, (2) the role played by subsequent stimuli and (3) the importance of the array of defensive behaviors of a species in understanding habituation. Although ubiquitous across animals and therefore expected, habituation is described for the first time in the order Opiliones.


Assuntos
Aracnídeos , Humanos , Animais , Habituação Psicofisiológica , Comportamento Predatório , Probabilidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-35222555

RESUMO

BACKGROUND: Scorpionism is a worldwide problem that has already made thousands of victims, and multi-disciplinary approaches for controlling their populations are to be more successful. Hens are often mentioned as tools for controlling scorpions; however, systematic/experimental behavioral studies are not available. Moreover, there is no systematic information on the effect of scorpion venoms on hens. Using the venomous yellow scorpion Tityus serrulatus, the present study aimed to clarify the following aspects: (1) voracity of hens, (2) how hens react when stung, (3) the effect of scorpion stings on hen behavior during attacks, and (4) hen survivorship after feeding on scorpions. METHODS: We attracted hens with corn powder, offered them scorpions and then recorded the hen-scorpion interaction. To test the effects of the sting we manually removed the scorpion's telson. RESULTS: We found that some hens ate up to six scorpions within minutes. By means of an ethogram and drawings, we showed that they exhibited several aversive behaviors when capturing scorpions. Removal of the scorpion telson stopped the aversive reactions, which was not observed in the control group. Finally, hens did not exhibit atypical behaviors after 1, 7 and 30 days and were all alive after 30 days. CONCLUSION: This is the first empirical and video recorded study providing evidence that hens are clearly affected by scorpion venom but do not die. Therefore, they may have potential to be used in biological control of these arthropods.

3.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484790

RESUMO

Abstract Background: Scorpionism is a worldwide problem that has already made thousands of victims, and multi-disciplinary approaches for controlling their populations are to be more successful. Hens are often mentioned as tools for controlling scorpions; however, systematic/experimental behavioral studies are not available. Moreover, there is no systematic information on the effect of scorpion venoms on hens. Using the venomous yellow scorpion Tityus serrulatus, the present study aimed to clarify the following aspects: (1) voracity of hens, (2) how hens react when stung, (3) the effect of scorpion stings on hen behavior during attacks, and (4) hen survivorship after feeding on scorpions. Methods: We attracted hens with corn powder, offered them scorpions and then recorded the hen-scorpion interaction. To test the effects of the sting we manually removed the scorpions telson. Results: We found that some hens ate up to six scorpions within minutes. By means of an ethogram and drawings, we showed that they exhibited several aversive behaviors when capturing scorpions. Removal of the scorpion telson stopped the aversive reactions, which was not observed in the control group. Finally, hens did not exhibit atypical behaviors after 1, 7 and 30 days and were all alive after 30 days. Conclusion: This is the first empirical and video recorded study providing evidence that hens are clearly affected by scorpion venom but do not die. Therefore, they may have potential to be used in biological control of these arthropods.

4.
J. venom. anim. toxins incl. trop. dis ; 28: e20210050, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360569

RESUMO

Scorpionism is a worldwide problem that has already made thousands of victims, and multi-disciplinary approaches for controlling their populations are to be more successful. Hens are often mentioned as tools for controlling scorpions; however, systematic/experimental behavioral studies are not available. Moreover, there is no systematic information on the effect of scorpion venoms on hens. Using the venomous yellow scorpion Tityus serrulatus, the present study aimed to clarify the following aspects: (1) voracity of hens, (2) how hens react when stung, (3) the effect of scorpion stings on hen behavior during attacks, and (4) hen survivorship after feeding on scorpions. Methods: We attracted hens with corn powder, offered them scorpions and then recorded the hen-scorpion interaction. To test the effects of the sting we manually removed the scorpion's telson. Results: We found that some hens ate up to six scorpions within minutes. By means of an ethogram and drawings, we showed that they exhibited several aversive behaviors when capturing scorpions. Removal of the scorpion telson stopped the aversive reactions, which was not observed in the control group. Finally, hens did not exhibit atypical behaviors after 1, 7 and 30 days and were all alive after 30 days. Conclusion: This is the first empirical and video recorded study providing evidence that hens are clearly affected by scorpion venom but do not die. Therefore, they may have potential to be used in biological control of these arthropods.(AU)


Assuntos
Animais , Venenos de Escorpião/envenenamento , Produtos Biológicos , Picadas de Escorpião , Escorpiões , Galinhas/metabolismo , Zea mays
5.
Behav Processes ; 179: 104220, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32791201

RESUMO

Animals that live by rivers may benefit from being able to cross them, but behavioral adaptations are needed. Additionally, being able to remain submerged is also important if the animal moves under water. Here we asked whether the harvestman Heteromitobates discolor (Opiliones), that lives by rivers, (a) can propel itself across the water surface, (b) moves onto the water if disturbed and (c) can survive for long periods when submerged. Heteromitobates discolor exhibited two gaits on water, whereas a strictly terrestrial species was not able to propel itself. When experimentally submitted to simulated predator attack on a rock on the river, H. discolor walked onto the water, while a strictly terrestrial species did not. Finally, it was able to survive for 6 h under water, presumably due to the conspicuous air film that formed around its body, which was also observed in a strictly terrestrial species. Altogether, these observations suggest that the aquatic environment is not a barrier for regular activity and can be used as an extension of the terrestrial environment for H. discolor.


Assuntos
Aracnídeos , Animais , Locomoção , Água
6.
J Chem Ecol ; 41(8): 716-23, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26271673

RESUMO

Harvestmen have a pair of scent glands that open through ozopores. The literature suggests a link between the morphology of the ozopore area and the emission of a defensive secretion. A previous study on a species that aggregates in open areas, where individuals are probably more easily spotted by predators, showed that this defensive secretion causes conspecifics to flee. However, it is unknown whether this behavior occurs in species that aggregate in sheltered areas, where prey are harder to find. Herein, we describe the morphology of the ozopore area, the mode of emission of the defensive secretion, and its chemical composition in the harvestman Discocyrtus pectinifemur. We also tested if the defensive secretion is used as an alarm pheromone. We found that D. pectinifemur releases the defensive secretion in different ways, one of them being as a jet. Emission as a jet contrasts with that known for all congeners previously studied, and is in accord with the expected morphology of the ozopore. We found that the defensive secretion of D. pectinifemur does not function as an alarm pheromone. The composition of the defensive secretion, a mixture of quinones, is congruent with those already described for the clade that includes Discocyrtus. Our results support the link between the morphology of the scent glands area and the emission behavior of the defensive secretion, and they suggest that the alarm pheromone function in harvestmen may be dependent on ecological factors.


Assuntos
Aracnídeos/fisiologia , Animais , Aracnídeos/anatomia & histologia , Aracnídeos/química , Feminino , Masculino , Feromônios/análise , Glândulas Odoríferas/anatomia & histologia , Glândulas Odoríferas/química , Glândulas Odoríferas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...